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A»-ANALOGUE OF STIRLING NUMBERS OF THE FIRST
KIND

TAEKYUN KIM

ABSTRACT. In this paper, we consider the A-analogue of the Stirling num-
bers of the first kind. In addition, we give some new identities and prop-
erties for these numbers.

1. Introduction
The falling factorials are given by

(@)o=1, @)p=a(@—-1)-(x—n+1), (n>1), (see]2,3,4]). (1.1)

The Stirling numbers of the first kind are defined as

(x)p = 251 n,)a!, (n>0), (see [5,9,10]), (1.2)
=0

where Si(n,l), (n,l > 0), are called the Stirling numbers of the first kind. We
recall that the rising factorials are given by

<z>=1, <z>=z(z+1)(xz+2)---(x+n-1), (n>1). (1.3)
The unsigned Stirling numbers of the first kind are defined by

<z >p= Y |Si(n, D!, (n>0), (see [3]). (1.4)
=0

From (1.3) and (1.4), we note that

i )" S1(n, D]t (see [3,5,10]). (1.5)
1=0
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It is well known that the generating function of the Stirling number of the first
kind is given by

%(log(l )= Sl(n,k)g, (see [10]). (1.6)
' n=k !

The symbol Sa(n, k) stands for the number of ways to partition a set of n things
into & nonempty subsets. For example, there are seven ways to split a four-
element set into two parts:

{1,2,3 U {4}, {1,2,4} U {3}, {1,3,4} U {2}, {2,3,4} U {1},
{1,2} U (3,4}, {1,31U{2,4}, {1,4} U {2,3};
thus S2(4,2) = 7.

The sequence Sa(n, k), (n,k > 0), are called the Stirling numbers of the
second kind which are defined by

2" =" Sa(n, (@), (n>0), (see [1—10]). (1.7)
=0

The generating function of Sa(n, k) is defined by
1
(e" - 1 ZSQ n, k (see [10]). (1.8)

From (1.7) and (1.8), we have

Sa(n+1,k) = Sa(n, k — 1) + kSa(n, k), (1 <k <n). (1.9)
Indeed, S2(n,2) = 2"~! — 1, (n > 1). Note that |Si(n, k)|, (n,k > 0), counts
the number of ways to arrange n objects into k& cycles instead of subsets. From
(1.5), we have

1S1(n+ 1, k)| = [S1(n, k = 1)[ + n[Si(n, k)| (1.10)

and

Si(n+1,k) = S1(n,k — 1)+ nSi(n, k), (1 <k <n). (1.11)
In this paper, we consider the A-analogue of the Stirling numbers of the first

kind due to Carlitz and we give some new properties and identities for these
numbers.
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2. A-analogue of Stirling numbers of the first kind
For A € R, let us define the A-analogue of falling factorials as follows:
(@or =1, @ =z(@=A)(z =21 (z—(n-DA), (n=21).  (2.1)

Note that limy_1(z)p x = (2)n, (n > 0). and limy_o(x), » = 2”. From (2.1),
we consider the A-analogue of binomial coefficients which are given by

For n € N, we define A-analogue of n! as follows:

(Mhr=nn—-An—-21)---(n—(n—1)A) = () x. (2.3)

Thus, by (2.2) and (2.3), we get

n n! n)k
(k)A = W ,( k;);)n_m = 11'“ (n2k=20). 24)

It is not difficult to show that the generating function of (,TL) N is given by

(14 A% = i <Z> Azt". (2.5)

n=0

By (2.5), we easily get

TR G R

Now, we define the A-analogue of the Stirling numbers of the first kind as follows:

(X)pr = ZSLA(n,l)a:l, (n>0). (2.7)
1=0

The coefficients Sy x(n,l) on the right hand sides of (2.7) are called the A-
analogue of the Stirling numbers of the first kind. From (2.7), we note that

517/\(070) =1, 517)\(77,, 0) = 517)\(07 TL) =0, (n S N)7 (28)
and

lim S;A(n,0) = Si(n,) and lim Sy x(n,0) = 0y,
A—1 A—=0 '
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where ¢,,; is the kronecker’s symbol. From (2.7), we note that

n+1
D Sian+ 1,02 = @)na1a = x(x = N)(@ = 20) -+ (& — n))
1=0

=a(@ =X (z— (n=DA)(z —nA) = (@)r(x —nA)

= Z (n,Da!(x — n\)
1=0
n+1 n+1
= Z Sia(n,l = 1)zt — n)\z Sy a(n,)z!, (n e N).
I=1 I1=1
(2.9)
Thus, (2.9), we get
Sia(n+1,0) = Sia(n,l — 1) — nASiA(n, 1), (2.10)

where 1 <1 < n. Note that the generating function of Sy (n, k) is given by

o (log (1+ )\t) Z S1a(n k) (2.11)

n==k

Now, we define the A-analogue of unsigned Stirling numbers of the first kind as
follows:

<z >pa=z@+A)(@+2N) - (z+ (n—1)N)

" 2.12
= SISl D!, (0> 0) 212
1=0
From (2.12), we note that
n+1
Z 1Sia(n+ 1L D)|z" =< & >pa=a(x+1)- (x+n))
1=0
=z(z+ A (x+ (n—1DN)(z+n\)
(2.13)

= Z |S1a(n, D]zt + n)\z |1 (n, )]
1=0 1=0

n+1 n+1

= Z IS1a(n, 1 = 1)|z’ + n/\z 1S1.(n, )|
1=1 1=1

Thus, by (2.13), we get
[S1a(n+ 1,0 = |S1.A(n, I — 1)| + nA|S1A(n, 1), (2.14)



\—analogue of stirling numbers of the first kind

where 1 <[ < n. We observe that

L0 [ 5100 [ 5140 [ s1am.2) [ s100.8) [ s1am.0) [ s140.5) [ siame) [+ ]
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 - 1 0 0 0 0
3 0 2102 -3\ 1 0 0 0
4 0 =3I\ 11)2 -6 1 0 0
5 0 A\ -50\3 352 -10A 1 0
6 0 =510 2740% | -225)\3 8512 -15\ 1

Note that Sy x(n,1) = (=1)" " A\""1(n - 1)!

LO [ 1siatm o)l [ 1s1a 0l [ 1siae2) | 15140030 [ 1810001 | 181a005)] [ 181006 [ -+ ]

0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 A 1 0 0 0 0
3 0 212 3\ 1 0 0 0
4 0 3IN3 1122 6 1 0 0
5 0 AT 50A° 352 10X 1 0
6 0 5IN\° 2747 2253 852 15\ 1

Note that |S1 \(n,1)] = A" "1 (n — 1)L
From (2.7) and (2.12), we have

D oISia(n, et =< @ >n x= (~1)" (= @)
=0

= (=1)" > Sia(n, () (2.15)
=0

- Z S1a(n, l)(—l)"—lxl.
1=0

Thus, by (2.15), we get

1S1a(n, )| = (=1)"7LS) x(n,1), (n>0). (2.16)
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Now, we observe that

(@) = Y Sialm, Dl = 37 S1a(n, )N (3)'
=0 =0

n l
= Z Sl,)\(nvl))‘l Z SQ(LWL) (%)m
=0 m=0

R l (2.17)
= Sl DAY So(l,mIA™ (@) ma
=0 m=0
= <Z SL)\(nv Z)/\limSQ(lv m)> (I)m,)\'
m=0 \l=m
Thus, by (2.17), we get
> S a(n, D Sa(lm)N ™ = 6 m, (2.18)
1=0

where 0 < m <[ <n. On the other hand, we have

(5)" = X200 (), = 3 Salm DA ol = )+ (o= (n = )3
=0 1=0
n n l
=2 Sa(m DN @her =3 Ko DN D Siallimia™  (2.19)
1=0 = =

= zn: (zn: Sg(n,Z)Sl,A(z,m)A—’> a™.
m=0 \l=m

Thus, by (2.19), we get

" = i (i 52(71, 1)517)\(l,m))\n_l> ™. (220)

m=0 \l=m

Therefore, from (2.20), we have

Z 52(”7 Z)SI,A(Z) /"L)Xnil = (Sm,ny (221)

l=m

where 0 <m <[ <n.
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